Indian Journal of Nuclear Medicine

ORIGINAL ARTICLE
Year
: 2021  |  Volume : 36  |  Issue : 2  |  Page : 134--139

The radioprotective effects of melatonin and nanoselenium on DNA double-strand breaks in peripheral lymphocytes caused by I-131


Seyed Masoud Jafarpour1, Babak Shekarchi1, Hamed Bagheri1, Bagher Farhood2 
1 Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
2 Department of Medical Physics and Radiology, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran

Correspondence Address:
Dr. Hamed Bagheri
Radiation Sciences Research Center, AJA University of Medical Sciences, Tehran
Iran

Background: One of the treatment modalities for thyroid cancer and hyperthyroidism is radioiodine-131 (I-131) therapy. The use of this therapeutic modality is not completely safe and can lead to oxidative stress, eventually DNA damages. However, these radiation-induced damages can be reduced by antioxidants. This study aimed to investigate the potential radioprotective effects of melatonin and selenium nanoparticles (SeNPs) on DNA double-stranded breaks (DSBs) caused by I-131. Materials and Methods: After obtaining informed consent, 6 ml blood was taken from each volunteer. The samples were divided into two general groups of control (without I-131) and with I-131. Each group was also divided into three subgroups, including without antioxidant, melatonin, and SeNPs. The samples of control group were incubated for 2 h after adding the antioxidants. The samples of I-131 group were first incubated for 1 h with the antioxidants and then the samples re-incubated for another 1 h after adding the I-131. Then, the samples were prepared for γH2AX assay. Results: The findings showed that after 1 h of incubation with 20 μCi I-131/2 mL, the DSB levels increased by 102.9% in comparison with the control group. In the I-131 group, there were significant reductions of the DSB levels after incubation with melatonin (P < 0.001) and SeNPs (P < 0.001) in comparison with the without antioxidant subgroup. Furthermore, the DSB levels at the melatonin + I-131 and the SeNPs + I-131 subgroups decreased to 38% and 30%, respectively, compared to the I-131 subgroup. Conclusion: According to the obtained findings, it can be concluded that the use of melatonin and SeNPs (as radioprotector agents) can reduce the DSB levels induced by I-131 in peripheral lymphocytes.


How to cite this article:
Jafarpour SM, Shekarchi B, Bagheri H, Farhood B. The radioprotective effects of melatonin and nanoselenium on DNA double-strand breaks in peripheral lymphocytes caused by I-131.Indian J Nucl Med 2021;36:134-139


How to cite this URL:
Jafarpour SM, Shekarchi B, Bagheri H, Farhood B. The radioprotective effects of melatonin and nanoselenium on DNA double-strand breaks in peripheral lymphocytes caused by I-131. Indian J Nucl Med [serial online] 2021 [cited 2021 Sep 27 ];36:134-139
Available from: https://www.ijnm.in/article.asp?issn=0972-3919;year=2021;volume=36;issue=2;spage=134;epage=139;aulast=Jafarpour;type=0