Indian Journal of Nuclear Medicine

: 2020  |  Volume : 35  |  Issue : 4  |  Page : 310--314

Assessment of radiation dose delivered and volume measurement by low- and high-dose diagnostic computed tomography: Anthropomorphic liver phantom study

Subhash Chand Kheruka, Manish Ora, Shivani Chaudhary, Sanjay Gambhir 
 Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Correspondence Address:
Dr. Sanjay Gambhir
Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh


Aim: Liver volume measurement is a mandatory test before measure liver surgeries and transplantation. We aimed a study on the difference in volume measurement and radiation dose to an anthropomorphic liver phantom using high-dose and low-dose diagnostic computed tomography (CT). Materials and Methods: Several measurements of the manual total volume measurement done on an anthropomorphic liver phantom mounted with thermoluminescent dosimeter. We exposed the phantom with diagnostic CT, low-dose CT, and a low-dose CT with copper filter. Results: Phantom underwent ten scanning for each exposure. There was no significant difference in the total volume measurement in comparison to the phantom volume. The volume of phantom measured by low-dose CT, low-dose CT with copper phantom, and high-dose CT were 1869 ± 18 cm3, 1852 ± 24 cm3, and 1908 ± 12 cm3, (P = 0.3), respectively. However, the radiation dose delivered was significantly different (1.54 mGy, 0.77 mGy, and 5.84 mGy [P = 0.001], respectively). Conclusion: Total liver volume measurement provides essential clinical information in several clinical conditions. We recommended that the volume measured by a low-dose CT has an excellent correlation with the diagnostic quality CT and should be a routine in the routine clinical practice. CT volumetry achieves the same result while using very less radiation exposure. It may also be used with functional imaging to give complete information.

How to cite this article:
Kheruka SC, Ora M, Chaudhary S, Gambhir S. Assessment of radiation dose delivered and volume measurement by low- and high-dose diagnostic computed tomography: Anthropomorphic liver phantom study.Indian J Nucl Med 2020;35:310-314

How to cite this URL:
Kheruka SC, Ora M, Chaudhary S, Gambhir S. Assessment of radiation dose delivered and volume measurement by low- and high-dose diagnostic computed tomography: Anthropomorphic liver phantom study. Indian J Nucl Med [serial online] 2020 [cited 2021 Apr 10 ];35:310-314
Available from:

Full Text


Various modalities are available to image liver such as ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and radionuclide scintigraphy. The first three imaging techniques predominant depend on morphological changes to detect pathology, whereas MRI may detect both morphological and physiological changes. Radionuclide scintigraphy determines the function of the liver. Since physiological changes usually precede morphological alternation, scintigraphy has excellent potential for the early diagnosis of disease before irreversible function changes take place.[1] However, it has a lower spatial resolution and demonstrates only functional liver volume.

Assessment of the liver volume is mandatory before significant liver resection and liver transplant donor workup. Evaluation of total and segmental liver volumes is crucial because of assuring appropriate graft size. That is one of the significant predictors of a successful outcome for both donor and recipient. In patients with preexisting chronic liver disease, postoperative liver failure after major hepatic resection is a paramount concern. Postoperative residual liver volume (future liver remnant [FLR]) to the standardized liver volume (SLV) ratio is an indicator in predicting the likelihood of it. A study of 301 extended right hepatectomies demonstrated an inverse correlation amongst small (<20%), intermediate (20%–30%), large (>30%) FLR volumes, and increasing risk for postoperative deaths.[2] In patients with normal liver parenchyma, a %FLR >25%–30% of the preoperative liver volume is considered sufficient for safe resection.[3] However, in patients with a compromised liver (e.g., fibrosis, steatosis, or cholestasis), a %FLR of >40% is preferred.[4]

An accurate and noninvasive liver volumetry is necessary, and CT is a useful imaging modality for this purpose. It has a high spatial resolution, contrast resolution, and is noninvasive.[5] MDCT-volumetry has a crucial role in decision-making, monitoring, and predicting liver hypertrophy preoperatiely and postoperatively.[6] Multiphasic contrast-enhanced CT scans have the advantage of high-resolution diagnostic images that enable accurate measurements of segmental liver volume using a portal and hepatic vein as a landmark for the segmental division.

However, CT scanning is associated with significant radiation exposure. It is essential to justify CT examinations beforehand to be compliant with the ALARA principle (as low as reasonably achievable). The radiologist should make efforts to reduce the radiation dose of multiphase CT examinations while maintaining diagnostic quality.[7],[8]

The purpose of our study was to measure the volume of anthropomorphic liver phantom using a low-dose CT scan and to compare it with standard diagnostic CT. We will also measure the radiation dose delivered to the phantom during low dose and diagnostic CT.

 Materials and Methods

Acquisition parameter

The study was conducted in the tertiary care teaching hospital. An anthropomorphic liver phantom used for measuring liver volumes [Figure 1]. Glycerin was filled in the liver phantom (used as a contrast). Qualified CT technologists conducted all the examinations on a GE 64 slice diagnostic CT machine (GE LightSpeed VCT) with Xeleris software (Xeleris 2.1517 GE healthcare). A standard adult abdominal imaging protocol used for all acquisitions with the patient lying supine on a CT table. Parameters applied to diagnostic CT were current 271 mA, voltage 140kv, and matrix size 512 × 512. Low-dose CT was performed on a GE Infinia Hawkeye-4 low dose four-slice CT scanner. The parameters used for low-dose CT was current 2.5 mA, voltage140 kV, and matrix size 512 × 512. Another low dose CT was done using the same imaging protocol with copper filter. A 3-mm thick copper plater is used as a copper filter. It is fixed over the X-ray tube of Infinia Hawkeye-4. It stops the radiation of lower 140 kV and further decreases the radiation dose to the liver phantom.[9] Dosage on the phantom calculated using the thermoluminescent dosimeter (TLD) during each acquisition. Ten measurements were done on anthropomorphic liver phantom by diagnostic CT, low-dose CT, and low-dose CT with copper filter.{Figure 1}

Calculation of volume of the liver phantom

The images of CT are processed in Xeleris workstation (Xeleris 2.1517 GE healthcare), GE healthcare, and transverse slices of phantom were saved and used for the calculation of volume. Liver volume was calculated using volume measurement software in the Xeleris software. A total of thirty transverse slices were obtained. We used a slice thickness of 0.625 mm and 5 mm for full diagnostic and low-dose CT, respectively. The polygonal region of interests was drawn manually over each axial image, and total volume measured.

Calculation of dose estimation

For dose estimation, we used the lithium fluoride chip (LiF2) TLD [Figure 2]. We precisely placed the TLD chips in the same place during each image acquisition. After exposure, all TLD chips read on the TLD reader (Harshaw TLD™ Model 3500).{Figure 2}

Statistical analysis

The normality of the continuous variables assessed. A value of P < 0.05 considered as statistically significant. The correlation coefficient ® was calculated. Pearson coefficient ® was used to quantify the association between the true and measured volumes. P < 0.05 was considered statistically significant. All data analyses were performed on the Statistical package for the Social Sciences, version-23 (SPSS-23, IBM, Chicago, USA).


A total of ten separate acquisitions were done. The liver phantom volume measurements were done on low-dose CT, low-dose CT with copper filter, and high-dose diagnostic CT [Figure 3]. The actual volume of the phantom was 1870 cm3. The volume of phantom measured by low-dose CT, low-dose CT with copper phantom, and high-dose CT were 1869 ± 18 cm 3, 1852 ± 24 cm 3, and 1908 ± 12 cm 3, respectively. There was a significant positive correlation between phantom volume, the volume of phantom measured by low-dose CT (r = 0.95, P = 0.005), and high-dose CT (r = 0.97, P =0.003). Although no significant difference was noted between the volume estimation by these techniques (P = 0.3). The radiation dose delivered with low-dose CT and high-dose CT radiation dose was 1.54 mGy and 5.84 mGy [Table 1]. This difference was statistically very significant (P = 0.001). The radiation dose further reduced significantly by using a copper filter, which was 0.77 mGy only (P = 0.002).{Figure 3}{Table 1}


Liver volume estimation in a prerequisite for the preoperative assessment of patients undergoing liver resection or liver transplantation. In the evaluation of suitability for the surgery, key considerations include preoperative baseline liver function, patient size, SLV, and postoperative residual liver volume (FLR).[10]

CT liver volumetry remains the most commonly used modality for measuring total and segmental liver volume. This modality is robust and very accurate. CT volumetry indirect measures liver function and used to exclude patients from planned liver resection. It also helps to select patients who will benefit from preoperative portal vein embolization. Future remnant liver volume measured by CT volumetry is used as an indirect measurement of the liver function and is currently the established method to determine whether a patient can safely undergo liver resection.[11],[12]

The analysis of the liver volume from CT images performed using manual volumetry before the introduction of automated methods. It consists of manual tracing of the liver boundary on individual CT slices. The different slice volumes are summed to calculate an overall liver volume. It is accurate, but a time-consuming method and is patient dependent. It takes 20–30 min to assess a liver volume for one patient.[10] Various automated and semi-automated methods have been proposed to speed up the process and to avoid tedious operations.[5],[13],[14],[15] Studies have shown that the semiautomatic segmentation algorithm substantially reduces the processing time while improving both accuracy and repeatability.[16] In our research, we spent near 15–20 to process every acquisition. However, we did not find a significant difference between the volume measured by the manual method and the actual phantom volume.

It is crucial to accurately measure liver volume, especially in patients with chronic liver disease or cirrhosis, where the size of the remnant liver becomes even more critical as a prognostic factor.[10] A graft-to-recipient weight ratio >0.8 or graft weight/standard liver volume ratio >40% for improving graft survival and for preventing postoperative graft dysfunction.[17],[18] Researchers have also reported that a liver recipient with a graft-to-recipient weight ratio of <0.8 had a significantly lower chance of survival.[19]

In this regard, it is desirable to keep the degree of error due to the various factors to the minimal. As expected, that liver volumes calculated on 0.625-mm three-dimensional (3D) images would be more precise than those on thicker images due to a partial volume effect. In our study, we used thick slices to measure liver volume. This study demonstrated that calculated liver volume mildly increases by decreasing the slice thickness, probably due to the partial volume effects. However, it was not very significant. Some previous researches have demonstrated similar trends in CT and MRI-based organ volumetry. However, they did not include isotropic 3D image data.[20],[21],[22]

The most useful way to assess radiation dose to the organ doses is by direct measurement (on patients with TLD or phantom) or by indirect analysis through analysis of CT dose indexes and published conventional factors obtained from Monte Carlo simulation and mathematical phantoms.[23],[24] We utilized the direct measurement method for this study. As the CT scan uses ionizing radiation, the primary concern remains radiation exposure. We have shown that there is no significant difference between the volume estimation by three radiation techniques. However, the radiation burden by them was different significantly. This finding has a significant clinical implication that accurate liver volume measurement can be done with a low radiation burden.

It is a fact that the radiation doses from CT procedures are higher than from other ionizing imaging-based imaging modalities. One CT chest examination delivers about 400 times the dose delivered by a chest X-ray examination. CT represents only 5% of the total number of medical X-ray procedures worldwide; however, it contributes about 34% of the annual collective dose from all medical X-ray examinations to the population.[25] This study demonstrates the whole liver volume could be measured by the low-dose CT. We are, thus, avoiding unnecessary ionizing radiation.

In this study, we did not use SAIP (software-assisted image post-processing) tools. However, volumes measured by the manual method were not very different from the original sizes. It is in concordance with the previous study that automated whole-liver segmentation showed similar volume in comparison to manual approaches. However, it shows improved reproducibility and postprocessing duration.[26] Another limitation of this study was done on the phantom and did not include human participants with resected livers. We have measured only the whole liver volume as segmental anatomy could not be assessed on noncontrast low-dose CT. However, this could be very helpful when the entire volume of the liver is needed.


In this study, we have demonstrated that there is no significant difference in total liver volume estimation with a low dose and high dose diagnostic CT study. However, the radiation burden by the diagnostic CT is very high in comparison to the low-dose CT. It could be further reduced by applying a copper filter. We recommended that to implement ALARA practice and diagnostic reference levels, we may use a low dose of CT study. Morphological volumetric evaluation of the liver may be combined with the use of functional imaging to reflect the functional liver volume more accurately.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.


1Krishnamurthy S, Krishnamurthy GT. Technetium-99 m-iminodiacetic acid organic anions: Review of biokinetics and clinical application in hepatology. Hepatol Baltim Md 1989;9:139-53.
2Kishi Y, Abdalla EK, Chun YS, Zorzi D, Madoff DC, Wallace MJ, et al. Three hundred and one consecutive extended right hepatectomies: Evaluation of outcome based on systematic liver volumetry. Ann Surg 2009;250:540-8.
3Vauthey JN, Chaoui A, Do KA, Bilimoria MM, Fenstermacher MJ, Charnsangavej C, et al. Standardized measurement of the future liver remnant prior to extended liver resection: Methodology and clinical associations. Surgery 2000;127:512-9.
4Clavien PA, Emond J, Vauthey JN, Belghiti J, Chari RS, Strasberg SM. Protection of the liver during hepatic surgery. J Gastrointest Surg Off J Soc Surg Aliment Tract 2004;8:313-27.
5Nakayama Y, Li Q, Katsuragawa S, Ikeda R, Hiai Y, Awai K, et al. Automated hepatic volumetry for living related liver transplantation at multisection CT. Radiology 2006;240:743-8.
6Ulla M, Ardiles V, Levy-Yeyati E, Alvarez FA, Spina JC, Garcia-Mónaco RD, et al. New surgical strategy to induce liver hypertrophy: Role of MDCT-volumetry to monitor and predict liver growth. Hepatogastroenterology 2013;60:337-42.
7Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med 2007;357:2277-84.
8Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet 2012;380:499-505.
9Kheruka SC, Aggarwal LM, Sharma N, Naithani UC, Maurya AK, Gambhir S. Evaluation of single-photon emission computed tomography images obtained with and without copper filter by segmentation. Indian J Nucl Med 2016;31:114-8.
10Lim MC, Tan CH, Cai J, Zheng J, Kow AW. CT volumetry of the liver: Where does it stand in clinical practice? Clin Radiol 2014;69:887-95.
11Shirabe K, Shimada M, Gion T, Hasegawa H, Takenaka K, Utsunomiya T, et al. Postoperative liver failure after major hepatic resection for hepatocellular carcinoma in the modern era with special reference to remnant liver volume. J Am Coll Surg 1999;188:304-9.
12Shoup M, Gonen M, D'Angelica M, Jarnagin WR, DeMatteo RP, Schwartz LH, et al. Volumetric analysis predicts hepatic dysfunction in patients undergoing major liver resection. J Gastrointest Surg 2003;7:325-30.
13Suzuki K, Kohlbrenner R, Epstein ML, Obajuluwa AM, Xu J, Hori M. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms. Med Phys 2010;37:2159-66.
14Frericks BB, Kiene T, Stamm G, Shin H, Galanski M.CT-based liver volumetry in a porcine model: Impact on clinical volumetry prior to living donated liver transplantation. Rofo 2004;176:252-7.
15D'Onofrio M, De Robertis R, Demozzi E, Crosara S, Canestrini S, Pozzi Mucelli R. Liver volumetry: Is imaging reliable? Personal experience and review of the literature. World J Radiol 2014;6:62-71.
16Hermoye L, Laamari-Azjal I, Cao Z, Annet L, Lerut J, Dawant BM, et al. Liver segmentation in living liver transplant donors: Comparison of semiautomatic and manual methods. Radiology 2005;234:171-8.
17Kiuchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, Asonuma K, et al. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation 1999;67:321-7.
18Sugawara Y, Makuuchi M, Takayama T, Imamura H, Dowaki S, Mizuta K, et al. Small-for-size grafts in living-related liver transplantation. J Am Coll Surg 2001;192:510-3.
19Hu Z, Zhong X, Zhou J, Xiang J, Li Z, Zhang M, et al. Smaller grafts do not imply early recurrence in recipients transplanted for hepatocellular carcinoma: A Chinese experience. Sci Rep 2016;6:26487.
20Reiner CS, Karlo C, Petrowsky H, Marincek B, Weishaupt D, Frauenfelder T. Preoperative liver volumetry: How does the slice thickness influence the multidetector computed tomography-and magnetic resonance-liver volume measurements? J Comput Assist Tomogr 2009;33:390-7.
21Berthelet E, Liu M, Truong P, Czaykowski P, Kalach N, Yu C, et al. CT slice index and thickness: Impact on organ contouring in radiation treatment planning for prostate cancer. J Appl Clin Med Phys 2003;4:365-73.
22Emirzeoglu M, Sahin B, Selcuk MB, Kaplan S. The effects of section thickness on the estimation of liver volume by the Cavalieri principle using computed tomography images. Eur J Radiol 2005;56:391-7.
23Hidajat N, Mäurer J, Schröder RJ, Nunnemann A, Wolf M, Pauli K, et al. Relationships between physical dose quantities and patient dose in CT. Br J Radiol 1999;72:556-61.
24Geleijns J, Van Unnik JG, Zoetelief J, Zweers D, Broerse JJ. Comparison of two methods for assessing patient dose from computed tomography. Br J Radiol 1994;67:360-5.
25UNSCEAR U. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation; 2000.
26Fananapazir G, Bashir MR, Marin D, Boll DT. Computer-aided liver volumetry: Performance of a fully-automated, prototype post-processing solution for whole-organ and lobar segmentation based on MDCT imaging. Abdom Imaging 2015;40:1203-12.