Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 1400 Print this page  Email this page Small font size Default font size Increase font size


 
 Table of Contents     
INTERESTING IMAGE
Year : 2021  |  Volume : 36  |  Issue : 4  |  Page : 459-461  

Right intraventricular metastasis of lung squamous cell carcinoma detected on 18F-fluorodeoxyglucose positron emission tomography-computed tomography


Department of Pulmonology, Mohammed V Military University Hospital, Rabat, Morocco

Date of Submission29-Mar-2021
Date of Decision21-May-2021
Date of Acceptance29-May-2021
Date of Web Publication15-Dec-2021

Correspondence Address:
Dr. Fenna Ahsino
Department of Pulmonology, Mohammed V Military University Hospital, Rabat
Morocco
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijnm.ijnm_40_21

Rights and Permissions
   Abstract 


Cardiac metastasis from lung cancer is rare. They are clinically silent and often diagnosed only postmortem. Cardiac magnetic resonance imaging (MRI) provides interesting information about the tissue characterization and vascularization of the tumor. The 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) shows hypermetabolism in the cardiac metastasis. We present a case of a 74-year-old male, diagnosed with squamous cell carcinoma of the lung, who underwent cardiac MRI which showed a right intracavitary mass. We share interesting images, detected on 18F-FDG PET/CT, of cardiac metastasis.

Keywords: 18F-Fluorodeoxyglucose positron emission tomography-computed tomography, cardiac metastasis, lung cancer, magnetic resonance imaging


How to cite this article:
Ahsino F, Zegmout A, Souhi H, Hanane EH, Rhorfi I, Abid A. Right intraventricular metastasis of lung squamous cell carcinoma detected on 18F-fluorodeoxyglucose positron emission tomography-computed tomography. Indian J Nucl Med 2021;36:459-61

How to cite this URL:
Ahsino F, Zegmout A, Souhi H, Hanane EH, Rhorfi I, Abid A. Right intraventricular metastasis of lung squamous cell carcinoma detected on 18F-fluorodeoxyglucose positron emission tomography-computed tomography. Indian J Nucl Med [serial online] 2021 [cited 2022 Jan 17];36:459-61. Available from: https://www.ijnm.in/text.asp?2021/36/4/459/332614



Metastatic cardiac tumors are extremely rare.[1] Melanoma, carcinoma (lung, breast, esophagus, and rarely colorectal), and hematologic malignancies (leukemia and lymphoma) are the leading causes for cardiac metastasis.[2],[3],[4] Tumors spread can occur, in the descending order, to the pericardium, myocardium, epicardium, and endocardium and less frequently to the intracavitary regions with predominance to the right side of the heart. Possible pathways for cardiac tumor spread are hematogenous, lymphatic, transvenous, or direct.[1] Most secondary tumors of the heart are clinically silent (over 90%) and are often diagnosed only postmortem.[5] Echocardiography remains the most efficient method for initial diagnosis. It assesses clinical signs and symptoms of heart failure, detects cardiac masses and pericardial effusion, and provides information on the location, size, and mobility of cardiac masses.[1] Supplemental diagnostic imaging methods are computed tomography, positron emission tomography-computed tomography (PET-CT), and magnetic resonance tomography that add information on the tumor size and morphology, location, invasiveness, and vascularization. These methods provide sections of cardiac, mediastinal, pulmonary, and thoracic structures in any plane without overlapping. The use of fluorodeoxyglucose (FDG) as a contrast agent is useful. Malignant tumors show increased glucose metabolism, which helps to differentiate malignant from benign tumors.[6],[7] Clinical presentation will define the most appropriate management modality. As cardiac metastases are seen in patients with advanced malignant disease, many patients will have already undergone surgical treatment or receive radio/chemotherapy for the original tumor. For the majority of patients, the goal of the treatment is to provide palliation of the symptoms and prevent tumor recurrence.[1]

We report a case of a 74-year-old male, smoker, presented with left chest pain and dyspnea for the past 2 months. Chest computed tomography (CT) showed a left basal pulmonary process (66 mm × 74 mm) with a hypodense material of the right ventricle (RV). Histological examination of a pulmonary biopsy CT-guided showed squamous cell carcinoma. Echocardiography revealed an intracardiac mass at the apical part of RV (50 mm × 32 mm) [Figure 1]. Cardiac magnetic resonance imaging (MRI) confirmed the presence of a mass, filling the apical two-third of the RV (56 mm × 39 mm) which has an iso-signal on T1 and T2, taking no contrast on the first pass of gadolinium. On the delayed sequence, late heterogeneous enhancement with hyposignal fragments [Figure 2]. PET-CT revealed a posterobasal hypermetabolic left pulmonary mass (SUVmax = 14.3) of 67 mm × 72 mm × 74 mm lysing the posterior arches of the 8th and 9th left ribs, associated with a hypermetabolic right anterior–inferior intracardiac mass (SUVmax = 11. 2) of 38 mm × 61 mm × 39 mm coming in contact with the pericardium, which is highly suggestive of malignancy and a hypermetabolic mass of the left iliac wing (SUVmax = 12.1) with visible bone lysis in favor of secondary bone localization [Figure 3]. The patient was referred to the oncology department for chemotherapy.
Figure 1: Echocardiography showing an intracardiac mass at the apical part of right ventricle

Click here to view
Figure 2: Cardiac magnetic resonance imaging: Sagittal (a), coronal (b), and axial (c) images showing an intracardiac mass of the right ventricle

Click here to view
Figure 3: (a) Maximum-intensity projection image showing fluorodeoxyglucose avid lesions in the left lung and the heart with mediastinal, hilar, and coelio-mesenteric hypermetabolic pathologic lymph nodes in addition to an intensive uptake on the left iliac wing. Corresponding axial computed tomography (b) and fused positron emission tomography-computed tomography images (c) showing posterobasal hypermetabolic left pulmonary mass associated with a hypermetabolic right anterior-inferior intracardiac mass. Sagittal images of the computed tomography (d) and fused positron emission tomography-computed tomography (e) at the level of heart lesion showing increased fluorodeoxyglucose uptake in anterior-inferior part of the heart with mediastinal hypermetabolic pathologic lymph nodes and hypermetabolic mass of the left iliac wing

Click here to view


Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient (s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Burazor I, Aviel-Ronen S, Imazio M, Goitein O, Perelman M, Shelestovich N, et al. Metastatic cardiac tumors: From clinical presentation through diagnosis to treatment. BMC Cancer 2018;18:202.  Back to cited text no. 1
    
2.
Bussani R, De-Giorgio F, Abbate A, Silvestri F. Cardiac metastases. J Clin Pathol 2007;60:27-34.  Back to cited text no. 2
    
3.
Silvestri F, Bussani R, Pavletic N, Mannone T. Metastases of the heart and pericardium. G Ital Cardiol 1997;27:1252-5.  Back to cited text no. 3
    
4.
Hall R, Cooley D, Jr MA, Frazier O, Neoplastic O'RA. Heart disease. In: Fuster V, Alexander RW, O'Rourke RA, Roberts R, King SB, Prystowsky EN, et al., editors. Hurst's the Heart. 11th ed. New York: McGraw-Hill; 2004. p. 2081-96.  Back to cited text no. 4
    
5.
Al-Mamgani A, Baartman L, Baaijens M, de Pree I, Incrocci L, Levendag PC. Cardiac metastases. Int J Clin Oncol 2008;13:369-72.  Back to cited text no. 5
    
6.
Goldberg AD, Blankstein R, Padera RF. Tumors metastatic to the heart. Circulation 2013;128:1790-4.  Back to cited text no. 6
    
7.
Bogren HG, DeMaria AN, Mason DT. Imaging procedures in the detection of cardiac tumors, with emphasis on echocardiography: A review. Cardiovasc Intervent Radiol 1980;3:107-25.  Back to cited text no. 7
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]



 

Top
  
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    References
    Article Figures

 Article Access Statistics
    Viewed142    
    Printed4    
    Emailed0    
    PDF Downloaded22    
    Comments [Add]    

Recommend this journal