Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 521 Print this page  Email this page Small font size Default font size Increase font size
Year : 2020  |  Volume : 35  |  Issue : 4  |  Page : 339-341

Impact of high temperature and humidity on the performance of positron emission tomography scanner

1 Department of Nuclear Medicine, Kailash Cancer Institute, Vadodara, Gujarat, India
2 Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital; Homi Bhabha National Institute, Mumbai, Maharashtra, India

Correspondence Address:
Mr. Sachin Tayal
Department of Nuclear Medicine, Kailash Cancer Institute, Vadodara, Gujarat
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijnm.IJNM_121_20

Rights and Permissions

Positron emission tomography/computed tomography (PET/CT) scanner is a state-of-art imaging device. Susceptibility of PET scanner in fluctuation environmental condition is known. Hence, every vendor prescribes the optimal conditions such as temperature and humidity to maintain the equipment in its best condition. In a hot summer day, we faced an unexpected long duration power failure in our department after administration of F-18 fluorodeoxyglucose to one of our patients. As air condition was not working in our department, temperature in the machine room went far beyond the prescribed level. As we had already injected the patient, we decided to perform PET scan of that patient in the existing condition in the machine room. When we reviewed the scan, we identified significant count loss in the image, which raised doubt in our mind. We discussed with our colleague and decided to perform a daily quality assurance (DQA) test to assess the condition of the equipment in high temperature. On DQA scan, we spotted several changes in the uniformity plot as well as energy plot. Following to that, the system was shut down completely till the main supply was restored successfully, and room temperature and humidity was restored to normal in machine room and console room. After several hours of restoration of normal condition in console and machine room, PET/CT equipment was restarted, and the DQA was repeated. On review, we found the restoration of normal DQA graph. We conclude that the sudden increase in temperature and humidity in PET/CT equipment room affects the performance of scanner which reflects as count deficit in the image. This impairment in the image quality may be because of bismuth germanate crystal, photomultiplier tubes, and associated electronics.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded45    
    Comments [Add]    

Recommend this journal