Indian Journal of Nuclear Medicine

: 2017  |  Volume : 32  |  Issue : 2  |  Page : 118--121

Metastatic brachial plexopathy with brain and spinal metastasis in a case of recurrent breast carcinoma demonstrated on 18F-FDG PET/CT

Sunny J Gandhi1, Bhavdeep Rabadiya2,  
1 Nuclear Medicine Physician, Infocus Diagnostics, Ahmedabad, Gujarat, India
2 Radiologist, Infocus Diagnostics, Ahmedabad, Gujarat, India

Correspondence Address:
Dr. Sunny J Gandhi
Infocus Diagnostics, Swastik Society, Opp. Vipul Dudhiya, Navrangpura, Ahmedabad


We report a case of a 56-year-old woman diagnosed with infiltrating ductal carcinoma of the left breast, who had undergone left modified radical mastectomy followed by radiotherapy and adjuvant chemotherapy. FDG PET-CT showed metastatic brachial plexopathy with intra-spinal and extra-axial brain metastasis. Metastatic brachial plexopathy along with brain and spinal metastasis is a rare condition with very less incidence. The scan also showed left para-sternal anterior chest wall recurrence with antero-superior mediastinal metastasis.18FDG-PET scanning is a useful tool in evaluation of patients with suspected metastatic plexopathy. It may also be useful in distinguishing between radiation-induced and metastatic plexopathy. Typical pattern of FDG uptake and dual time point imaging may increase specificity and require further evaluation.

How to cite this article:
Gandhi SJ, Rabadiya B. Metastatic brachial plexopathy with brain and spinal metastasis in a case of recurrent breast carcinoma demonstrated on 18F-FDG PET/CT.Indian J Nucl Med 2017;32:118-121

How to cite this URL:
Gandhi SJ, Rabadiya B. Metastatic brachial plexopathy with brain and spinal metastasis in a case of recurrent breast carcinoma demonstrated on 18F-FDG PET/CT. Indian J Nucl Med [serial online] 2017 [cited 2020 Jul 10 ];32:118-121
Available from:

Full Text


Common sites of breast cancer metastases include regional lymph nodes, bones, liver, lungs and brain. Brachial plexopathy is a rare condition with an incidence of less than 0.5%. Metastatic breast and lung cancers are the most common non-traumatic causes of brachial plexopathy, after radiation induced fibrosis.[1] Because one of the major lymphatic drainage of the breast is through the apex of the axilla, it is not uncommon for metastatic breast cancer to invade the brachial plexus.[2] Metastatic lymphadenopathy may encase the neurovascular bundle, resulting in vascular or neural symptoms.

 Case Report

A 56-year-old woman diagnosed with infiltrating ductal carcinoma of the left breast had undergone left modified radical mastectomy followed by radiotherapy and adjuvant chemotherapy. She presented to her oncologist with left para sternal chest wall recurrence with restriction of movement of the left upper limb. The patient was referred for 18F-FDG PET/CT to evaluate the extent of recurrent/metastatic disease. Whole-body contrast enhanced PET/CT was acquired 1 hour following the intravenous injection of 296 MBq of 18F-FDG on PET CT Discovery 600, with 16 slice CT scanner. The scan showed ill-defined heterogeneously enhancing hypermetabolic soft tissue along left brachial plexus [Figure 1] with intra-spinal extension through neural foramina at C5-C6 and C6-C7 levels on the left side [Figure 2] along with few ill -defined intra-spinal enhancing lesions at D4-D5, D7-D8 and D8-D9 levels [Figure 3] and heterogeneously enhancing extra-axial lesion in left C-P angle region [Figure 4]. The scan also showed heterogeneously enhancing ill-defined soft tissue lesion in subcutaneous plane in left para-sternal region in anterior chest wall at 1st intercostal space [Figure 5] along with soft tissue in antero-superior mediastinum extending along left proximal common carotid artery [Figure 6].{Figure 1}{Figure 2}{Figure 3}{Figure 4}{Figure 5}{Figure 6}


The two major causes of brachial plexopathy in breast cancer patients are metastatic invasion of and radiation damage to the plexus.[3],[4] Differentiation between the two pathologies is important to plan treatment optimally. It is difficult to image because of complicated anatomy of the plexus and its immediate anatomical relationship to blood and lymphatic vessels.

Computerized tomography scanning has been used to assess the brachial plexus [5],[6] but it has several limitations. The neurovascular bundle of the axillary artery and brachial plexus may appear as a single structure when the administration of contrast medium is poorly timed.[7] In a series of 46 patients with proven metastatic plexopathy, 11% of patients had normal CT scans.[4] A Ahmad et al also had either normal CT or the appearance of minimal thickening of the brachial plexus in 6 cases out of the total 11 cases in their study.[8] Minimal thickening can be related to previous surgery or radiotherapy. All these cases were positive on FDG PET. Furthermore, CT is not able to differentiate tumor infiltration from radiation fibrosis.[4]

MRI has been claimed to be the test of choice in evaluating brachial plexopathy. Its superiority to CT scanning relates to its ability to differentiate more accurately nerves from surrounding vessels and soft tissues. Review of the literature suggests that there is no doubt that MRI can delineate both the normal and abnormal anatomy of the brachial plexus in more detail than CT scan. There are conflicting data on distinction between radiation and neoplastic plexopathy using MRI. Some studies have shown that tumor recurrence has a higher signal intensity than radiation fibrosis on T2-weighted images,[7],[9] although other authors have reported increased T2 signal in both metastatic and radiation plexopathy patients.[10]

FDG-PET is a useful imaging technique to study the brachial plexus in breast cancer patients and that it may be useful to monitor treatment efficacy as well. The current data is insufficient to suggest unequivocally that FDG-PET may be useful in distinguishing neoplastic from radiation plexopathy. Typical pattern has been advocated for detecting metastatic brachial plexopathy.[11] Maximum intensity projection (MIP) and coronal 18F-FDG PET/CT images show linear extension of tracer activity from superomedial aspect (supra/infraclavicular) to lateral aspect of the axilla closely related to the subclavian/axillary vessels. Dual time point imaging may have some role in this scenario and further work in this area may be proved useful.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest


1Wood JJ, Gawler J, Whittle RJ, Staunton MD. Brachial plexopathy in breast carcinoma - An unsolved problem. Eur J Surg Oncol 1991;17:265-9.
2Wittenberg KH, Adkins MC. MR imaging of nontraumatic brachial plexopathies: Frequency and spectrum of findings. Radiographics 2000;20:1023-32.
3Bagley FH, Walsh JW, Cady B, Salzman FA, Oberfield RA, Pazianos AG. Carcinomatous versus radiation-induced brachial plexus neuropathy in breast cancer. Cancer 1978;41:2154-157.
4Cascino TL, Kori S, Krol G, Foley KM. CT of the brachial plexus in patients with cancer. Neurology 1983;33:1553-557.
5Cooke J, Cooke D, Parsons C. The anatomy and pathology of the brachial plexus as demonstrated by computed tomography. Clin Radiol 1988; 39:595-601.
6Moskovic E, Curtis S, A'Hern RP, Harmer CL. The role of diagnostic CT scanning of the brachial plexus and axilla in the follow-up of patients with breast cancer. Clin Oncol (R Coll Radiol) 1992;4:74-77.
7Rapaport S, Blair DN, McCarthy SM, Desser TS. Brachial plexus: Correlation of MR imaging with CT and pathological findings. Radiology 1988;167:161-5.
8Ahmad A, Barrington S, Maisey M, Rubens RD. Use of positron emission tomography in evaluation of brachial plexopathy in breast cancer patients. Br J Cancer 1999;79:478-82.
9Glazer HS, Lee JK, Levitt RG, Heiken JP, Ling D, Totty WG, et al. Radiation fibrosis: Differentiation from recurrent tumor by MR imaging. Radiology 1985; 156:721-26.
10Thyagarajan D, Cascino T, Harms G. Magnetic resonance imaging in brachial plexopathy of cancer. Neurology 1995;45:421-27.
11Tripathi Madhavi, Das Chandan J. Srivastava Anurag, Bal ChandraSekhar, Malhotra Arun, Metastatic Brachial Plexopathy in a case of Recurrent Breast Carcinoma demonstrated on 18F-FDG PET/CT Nucl Med Mol Imaging. 2014;48:85-86.