Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 5909 Print this page  Email this page Small font size Default font size Increase font size
ORIGINAL ARTICLE
Year : 2020  |  Volume : 35  |  Issue : 1  |  Page : 36-39

Energy window and collimator optimization in lutetium-177 single-photon emission computed tomography imaging using Monte Carlo simulation


1 Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed, V University, Rabat, Morocco
2 Department of Medical Physics, Academic Hospital of Udine, Udine, Italy

Correspondence Address:
Dr. Youssef Bouzekraoui
Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat
Morocco
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijnm.IJNM_121_19

Rights and Permissions

Introduction: In lutetium-177 (Lu-177) single-photon emission computed tomography (SPECT) imaging, the accuracy of activity quantification is degraded by penetrated and scattered photons. We assessed the scattered photon fractions in order to determine the optimal situation and development of correction method. This study proposes to compare the image quality that can be achieved by three collimators. Materials and Methods: Siemens Medical System Symbia fitted with high-energy (HE), medium-energy (ME), and low-energy high-resolution collimators was simulated using the SIMIND Monte Carlo code simulation code. Counts were collected in three different main-energy window widths (20%, 15%, and 10%) for Lu-177 point source. Primary and scattered point spread functions and also geometric, penetration, scattering were drawn and analyzed. Results: In Lu-177 imaging, a 20% of main-energy window and ME collimator were found to be optimal. HE collimator can be used when the resolution is not required. Conclusion: These results provide the optimal energy window and collimator in Lu-177 SPECT imaging and will help the quantification of Lu-177.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed121    
    Printed0    
    Emailed0    
    PDF Downloaded17    
    Comments [Add]    

Recommend this journal