Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 454 Print this page  Email this page Small font size Default font size Increase font size


 
 Table of Contents     
ORIGINAL ARTICLE
Year : 2016  |  Volume : 31  |  Issue : 2  |  Page : 119-122  

An update on radiation absorbed dose to patients from diagnostic nuclear medicine procedures in Tehran: A study on four academic centers


1 Nuclear Medicine Department, Shiraz University of Medical Sciences, Shiraz, Iran
2 Nuclear Medicine Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Shiraz University of Medical Sciences, Shiraz, Iran

Date of Web Publication9-Mar-2016

Correspondence Address:
Motahareh Motazedian
Department of Nuclear Medicine, Namazi Hospital, Shiraz
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-3919.178262

Rights and Permissions
   Abstract 

Purpose: Use of radiopharmaceuticals for diagnostic nuclear medicine procedures is one of the main sources of radiation exposure. We performed this study with respect to the rapid growth in nuclear medicine in Iran and lack of updated statistics. Materials and Methods: The data were obtained for all active Nuclear Medicine Centers affiliated to Shahid Beheshti University of Medical Sciences during 2009 and 2010. Results: The most frequently performed procedures were bone (30.16%), cardiac (28.96%), renal (17.97%), and thyroid (7.93%) scans. There was a significant decrease in the number of thyroid scintigraphies with 131 I and 99m Tc-sulfur colloid liver/spleen scans and tremendous increase in the frequencies of cardiac and bone scintigraphies compared to one decade ago. Conclusion: Compared to previous studies, there were striking changes in trends of diagnostic nuclear medicine procedures in Tehran. This field is still evolving in the country, and this trend will further change with the introduction of positron emission tomography scanners in future.

Keywords: Nuclear medicine, patient, radiation absorbed dose, Tehran


How to cite this article:
Motazedian M, Tabeie F, Vatankhah P, Shafiei B, Amoui M, Atefi M, Ansari M, Asli I N. An update on radiation absorbed dose to patients from diagnostic nuclear medicine procedures in Tehran: A study on four academic centers. Indian J Nucl Med 2016;31:119-22

How to cite this URL:
Motazedian M, Tabeie F, Vatankhah P, Shafiei B, Amoui M, Atefi M, Ansari M, Asli I N. An update on radiation absorbed dose to patients from diagnostic nuclear medicine procedures in Tehran: A study on four academic centers. Indian J Nucl Med [serial online] 2016 [cited 2019 Sep 16];31:119-22. Available from: http://www.ijnm.in/text.asp?2016/31/2/119/178262


   Introduction Top


Use of radioactive pharmaceuticals for diagnostic nuclear medicine procedures is one of the main sources of radiation exposure resulting from ionizing radiation to populations. Annual assessment of patients' absorbed dose can give a quantitative estimate of per capita population absorbed dose. Risk of exposure to ionizing radiations is expressed by factors such as shortening of life span and induced malignancies. [1],[2],[3],[4] The International Commission on Radiological Protection (ICRP) provides the effective doses, and hence the radiation risk to patients caused by various radiopharmaceuticals and nuclear medicine procedures. [5],[6],[7] Although, the annual number of nuclear medicine procedures and their collective dose are way below the corresponding values for medical X-ray examinations (2% and 6%, respectively), the mean dose per procedure is larger for nuclear medicine (4.6 mSv) than for medical X-rays (1.2 mSv). [8]

With respect to the rapid growth in number of nuclear medicine procedures performed in Iran, and considering the fact that previous survey in Tehran was performed a decade ago, in 2003, [9] we performed this study to give an updated estimate on the statistics and trends of nuclear medicine procedures as part of a residency thesis.


   Materials And Methods Top


The data of the annual diagnostic nuclear medicine procedures were obtained for all four active nuclear medicine centers affiliated to Shahid Beheshti University of Medical Sciences, Tehran, Iran, during 2009 and 2010. The data comprised the type and frequency of examinations, type of radiopharmaceuticals used, range of administered activity for each examination, and age distribution of the patients. As the amount of dose used in different nuclear centers varied, the mean administered activity for each examination was used in the five age brackets of <1 year, 1-5 years, 6-10 years, 11-15 years, and >16 years.

The first column in [Table 1] shows the diagnostic nuclear medicine procedures and corresponding radiopharmaceuticals used. To calculate the effective dose and collective effective dose, the authors used the effective dose per unit administered activity given in ICRP Publication No. 53 (1988) and its addenda, ICRP Publication No. 80 (1999), and ICRP Publication No. 106 (ICRP 2008) (third column). The effective dose per examination (fourth column) was obtained by multiplying the mean administered activity (second column) by the corresponding effective dose per unit administered activities for each examination (third column). The annual number of each examination in the five age groups is listed in the fifth column of [Table 1]. The collective effective dose for each examination is shown in the last column, which was calculated by multiplying the effective dose per examination by the corresponding number of examinations in each age bracket. The effective dose per procedure was obtained by summing the effective doses used for all radiopharmaceuticals, and the collective effective dose was obtained. [Table 2] is filled for both 2009 and 2010.
Table 1: Mean administered activities, effective dose per unit administered activities, effective dose per examination, annual number of examinations, and collective effective doses for diagnostic nuclear medicine examinations in 2010


Click here to view
Table 2: Frequency and percentage of nuclear medicine examinations in 2009-2010a


Click here to view



   Results Top


The annual activities of the nuclear medicine centers in 2010 is provided in [Table 1], which comprises the examination type, radiopharmaceutical used, mean administered activities (MBq), effective dose per unit administered activity (mSv/MBq), and the effective dose per examination (mSv) for each examination in the five age groups. Some miscellaneous procedures, such as red blood cell scan, indirect radionuclide cystography, and dacryoscintigraphy using 99m Tc pertechnetate, are provided as "other" in the last row of [Table 1]. The annual total number of examinations and corresponding collective effective doses are calculated and provided in the last row of [Table 1]. Same procedure was repeated for 2009.

[Figure 1] is showing the percentage of the total number of examinations and percentage collective effective dose. During these 2 years, results reveal a 6.14% and 3.63% increase in the annual number of examinations and collective effective dose, respectively [Figure 1] and [Table 2].
Figure 1: The contribution of nuclear medicine procedures from total annual number of examinations and collective effective dose (average of 2009, 2010)

Click here to view
Figure 2: Percentage share of radionuclides from total number of procedures and collective effective dose (average of 2009, 2010)

Click here to view


The most frequently performed procedures were bone (30.16%), cardiac (28.96%), renal (17.97%), and thyroid scintigraphies (7.93%), which contributed to 24.01%, 36.76%, 5.82%, and 2.08% of the average collective and effective dose during these 2 years.

[Figure 2] shows the relative contribution of radionuclides to collective effective dose and total number of procedures as averaged over these 2 years. The most frequently used radiopharmaceutical was 99m Tc, which contributed to 98.20% of a total number of examinations and 89.89% of collective effective dose. Although 131 I accounted for only 0.34% of procedures, it contributed to 5.68% of the collective effective dose.


   Discussion Top


Comprehensive studies on diagnostic nuclear medicine procedures and their contribution to the population absorbed doses have been reported by many investigators worldwide. [10],[11],[12],[13],[14],[15],[16],[17],[18] However, despite the rapid growth of these procedures in Iran, there is a profound lack of statistics and the previous survey in Tehran was conducted a decade ago. [5] Compared to the previous study by the same group in the same centers, [19] striking differences are noted in trends of diagnostic nuclear medicine procedures. Thyroid scintigraphies with 131 I which accounted for 2.35% of total number of procedures and resulted in 16.59% of collective effective dose in 1999 and 2000 contributed to only 0.03% of the number of examinations and 0.07% of the effective dose in 2009 and 2010. This is due to substitution of 131 I with 99m Tc for thyroid examinations, which has led to less radiation absorbed dose from 131 I to the patients. On the other hand, there is tremendous growth in the number of cardiac (55.7-fold) and bone (3.60-fold) scans with increases from 0.52% and 8.4% to 28.97% and 30.25% during the same period. The huge increase in the number of cardiac examinations is mainly due to the introduction of single-photon emission computed tomography technique. The changes in bone scan frequency could be the result of an increase in the prevalence of malignancies and lack of other screening techniques such as positron emission tomography (PET) scanners in the country. The overall number of thyroid examinations has decreased from higher than 80% in 1989 [20] to 7.91% in 2010. This could be the result of lower prevalence of goiter due to the implementation of iodine enrichment diet programs, [21],[22] lower referral of patients by specialists, and the introduction of fine needle aspiration and advanced ultrasonography techniques. The latter two reasons are also responsible for the 78-fold decrease in liver/spleen 99m Tc-sulfur colloid examinations from 7% in 1989 [20] to 0.09 in 2010. Together, bone, cardiac, and renal scans accounted for 70.04% of examinations and 66.59% of collective effective dose.


   Conclusion Top


Based on the results of our study, striking changes are noted on the trends of diagnostic nuclear medicine procedures in Iran. This field is still evolving in the country, and this trend will change further with the introduction of PET scanners.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Reiners C. Radiation exposure in diagnostic nuclear medicine: Risk comparisons on the basis of effective doses. Nuklearmedizin 1993;32:47-51.  Back to cited text no. 1
    
2.
Shrimpton PC, Wall BF, Hart D. Diagnostic medical exposures in the U.K. Appl Radiat Isot 1999;50:261-9.  Back to cited text no. 2
    
3.
Mettler FA Jr, Davis M, Kelsey CA, Rosenberg R, Williams A. Analytical modeling of worldwide medical radiation use. Health Phys 1987;52:133-41.  Back to cited text no. 3
[PUBMED]    
4.
Overbeek F, Pauwels EK, Broerse JJ. Carcinogenic risk in diagnostic nuclear medicine: Biological and epidemiological considerations. Eur J Nucl Med 1994;21:997-1012.  Back to cited text no. 4
    
5.
Tabeie F, Mohammadi H, Asli IN. Population radiation dose from diagnostic nuclear medicine procedures in the Tehran population in 1999-2003: Striking changes in only one decade. Health Phys 2013;104:127-31.  Back to cited text no. 5
    
6.
International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. Oxford: Pergamon Press, ICRP Publication 53;1988.  Back to cited text no. 6
    
7.
International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. Oxford: Pergamon Press, ICRP Publication 80;1999.  Back to cited text no. 7
    
8.
International Commission on Radiological Protection. Radiation Dose to Patients from Radiopharmaceuticals. A Third Amendment to ICRP Publ. 53. Oxford: Pergamon Press, ICRP Publication 106;2008.  Back to cited text no. 8
    
9.
United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation. 2000. Report to the General Assembly with Annex D: Medical Radiation Exposures. Vol. I. New York: UNSCEAR, United Nations; 2000. p. 202.  Back to cited text no. 9
    
10.
Tabeie F, Neshandar Asli I, Aghamiri SM, Arbabi K. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures. Iran J Radiat Res 2004;2:63-8.  Back to cited text no. 10
    
11.
Mettler FA Jr, Bhargavan M, Thomadsen BR, Gilley DB, Lipoti JA, Mahesh M, et al. Nuclear medicine exposure in the United States, 2005-2007: Preliminary results. Semin Nucl Med 2008;38:384-91.  Back to cited text no. 11
    
12.
Mettler FA Jr, Bhargavan M, Faulkner K, Gilley DB, Gray JE, Ibbott GS, et al. Radiologic and nuclear medicine studies in the United States and worldwide: Frequency, radiation dose, and comparison with other radiation sources - 1950-2007. Radiology 2009;253:520-31.  Back to cited text no. 12
    
13.
Stamm-Meyer A, Nosske D, Schnell-Inderst P, Hacker M, Hahn K, Brix G. Diagnostic nuclear medicine procedures in Germany between 1996 and 2002: Application frequencies and collective effective doses. Nuklearmedizin 2006;45:1-9.  Back to cited text no. 13
    
14.
Hart D, Wall BF. UK nuclear medicine survey 2003-2004. Nucl Med Commun 2005;26:937-46.  Back to cited text no. 14
    
15.
Scanff P, Donadieu J, Pirard P, Aubert B. Population exposure to ionizing radiation from medical examinations in France. Br J Radiol 2008;81:204-13.  Back to cited text no. 15
    
16.
Brugmans MJ, Buijs WC, Geleijns J, Lembrechts J. Population exposure to diagnostic use of ionizing radiation in The Netherlands. Health Phys 2002;82:500-9.  Back to cited text no. 16
    
17.
Ftácniková S, Ragan P. Radiation dose to the population of Slovak Republic from diagnostic nuclear medicine. Health Phys 1995;69:16-20.  Back to cited text no. 17
    
18.
Flores OB, Caballero AB, Sánchez OL, Estrada AM, García JH. Population effective collective dose from nuclear medicine examination in Cuba. Radiat Prot Dosimetry 2006;121:438-44.  Back to cited text no. 18
    
19.
Yi Y, Zheng J, Zhuo W, Gao L. Trends in radiation exposure from clinical nuclear medicine procedures in Shanghai, China. Nucl Med Commun 2012;33:331-6.  Back to cited text no. 19
    
20.
Mohammadi H, Tabeie F, Saghari M. Trends of population radiation absorbed dose from diagnostic nuclear medicine procedures in Iran: 1985-1989. Health Phys 1995;68:503-8.  Back to cited text no. 20
    
21.
Azizi F, Mehran L, Sheikholeslam R, Ordookhani A, Naghavi M, Hedayati M, Padyab M, Mirmiran P. Sustainability of a well-monitored salt iodization program in Iran: Marked reduction in goiter prevalence and eventual normalization of urinary iodine concentrations without alteration in iodine content of salt. J Endocrinol Invest 2008;31:422-31.  Back to cited text no. 21
    
22.
Heydarian P, Ordookhani A, Azizi F. Goiter rate, serum thyrotropin, thyroid autoantibodies and urinary iodine concentration in Tehranian adults before and after national salt iodization. J Endocrinol Invest 2007;30:404-10.  Back to cited text no. 22
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
  
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials And Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed633    
    Printed6    
    Emailed0    
    PDF Downloaded77    
    Comments [Add]    

Recommend this journal