Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 921 Print this page  Email this page Small font size Default font size Increase font size
ORIGINAL ARTICLE
Year : 2016  |  Volume : 31  |  Issue : 1  |  Page : 20-26

Digital contrast enhancement of 18 Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma


Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India

Correspondence Address:
Rakesh Kumar
Department of Nuclear Medicine, All India Institute of Medical Sciences, E-81, Ansari Nagar (East), AIIMS Campus, New Delhi - 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-3919.172346

Rights and Permissions

Purpose: The role of 18 fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. Materials and Methods: A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold "m" and slope "e"). The input parameters which resulted in an image having a high value of 2 nd order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. Results: The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters "m" had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope "e" was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. Conclusion: The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed958    
    Printed6    
    Emailed0    
    PDF Downloaded99    
    Comments [Add]    

Recommend this journal