Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 263 Print this page  Email this page Small font size Default font size Increase font size


 
 Table of Contents     
PICTORIAL ESSAY
Year : 2012  |  Volume : 27  |  Issue : 1  |  Page : 59-62  

Skeletal scintigraphy manifestations of hematologic disorders


Nuclear Medicine Services, Kothrud, Pune, Maharashtra, India

Date of Web Publication15-Mar-2013

Correspondence Address:
Shrikant V Solav
Spect Lab, Nuclear Medicine Serives, K 2/1 Erandawana Co-op Society, Near Mhatre Bridge, Kothrud, Pune - 411 004, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-3919.108880

Rights and Permissions
   Abstract 

Skeletal manifestations are common in hematologic disorders. Benign entities such as Sickle cell disease develop microvascular embolization causing skeletal crisis. Leukemia, acute myeloblastic or lymphoblastic may develop bone marrow infarcts. Compromised immunity makes them susceptible to secondary infection leading to osteomyelitis or septic arthritis. Exposure to steroids may lead to osteonecrosis in these cases. Presented here is an atlas of various scintigraphic skeletal manifestations encountered over the past 10 years, in hematologic disorders.

Keywords: Acute myeloid leukemia, bone infarct, bone scan, chronic myeloid leukemia, osteonecrosis, Sickle cell anemia


How to cite this article:
Solav SV, Bhandari R, Solav P. Skeletal scintigraphy manifestations of hematologic disorders. Indian J Nucl Med 2012;27:59-62

How to cite this URL:
Solav SV, Bhandari R, Solav P. Skeletal scintigraphy manifestations of hematologic disorders. Indian J Nucl Med [serial online] 2012 [cited 2019 May 23];27:59-62. Available from: http://www.ijnm.in/text.asp?2012/27/1/59/108880


   Introduction Top


Skeletal symptoms are common in day to day practice. Elderly patients with mineral deficiency, degenerative changes, osteoarthritis etc may account for a large proportion of these cases. However, young patients or grown up patients with progressive skeletal manifestations may be specifically evaluated to rule out some systemic conditions. Hematologic disorders may also present with such symptoms and critical review of bone scan in such cases may help in early settlement of diagnosis. Present study highlights some important hematologic condition in pictorial essay.


   Materials and Methods Top


Skeletal scintigraphy was performed in the presented cases using Technetium 99 m-methylene diphosphonate. A dose of 150-750 MBq was used depending upon the age. Imaging was performed three to 4 h post-radiopharmaceutical administration E-Cam or Symbia gamma camera (Siemens, Erlangen, Germany) systems using a low-energy high resolution collimator. Matrix size used was 512 × 512.

Three phases scanning was done in patients with clinically localizing symptoms. Images were interpreted using dicom studies.


   Cases and Discussion Top


Sickle cell anemia

Sickle cell anemia was first described in 1910. [1] It is an autosomal recessive hemoglobinopathy. Hemoglobin electrophoresis and chromatography studies have demonstrated substitution of thymine for adenine in the glutamic acid codon of DNA, which, results in substitution of valine for glutamic acid in the sixth position on the beta globin chain of hemoglobin molecule. [2],[3] The major genotypes are Sickle cell (SS homozygous), Sickle cell C (SC Sickle hemoglobin C), Sickle beta thalassemia disease. Sickle cell trait is seen in a small population. Diagnosis is made by demonstration of various migration pattern of normal and hemoglobin S during electrophoresis. The difference in migration patterns of normal and hemoglobin S seen during electrophoresis is due to substitution of valine for glutamic acid resulting in two fewer negative charges in the abnormal molecule.

When a cell repeated Sickles because of deoxygenation, its membrane is permanently altered. [4],[5] These end-stage cells are responsible for clinical manifestations of Sickle cell anemia such as recurrent painful episodes, chronic organ dysfunction and chronic hemolytic anemia. Gall stones, hemolytic jaundice, poorly healing ulcers of shin are some other complications.

Case 1

Illustration of avascular necrosis, cortical bone infarct, soft tissue infarct in Sickle cell anemia [Figure 1].
Figure 1: A 24-year-old man presented with pain in the hip. His hemoglobin was 8 g per deciliter, hemoglobin electrophoresis result: Hemoglobin (Hb) Ao 49% (reference range 80-99%), Hb A 2 2.9% (reference range <2-3.5%), Hb F 0.5% (<2.5%), Hb S 41.9% (<0.9%), Hb D nil, Hb C nil. Plain radiograph; (a) Revealed osteolytic lesion in the superolateral quadrant of head of left femur,(b) Magnetic resonance imaging revealed osteonecrosis in the head of left femur. Bone scan; (c) Showed increased inhomogeneous tracer distribution in the shaft of long bones bilaterally, pelvis bilaterally suggesting cortical infarcts. The head of left femur shows cold area with increased inhomogeneous uptake within, that is compatible with osteonecrosis. There is soft tissue tracer localization in the spleen (>) typical of Sickle cell anaemia

Click here to view


Musculoskeletal manifestation is the most common cause of morbidity in Sickle cell anemia. [6] Painful crisis usually affects the meta-diaphyseal region and can involve multiple sites. Juxta-articular involvement may cause joint effusion. [7],[8] Onset is usually at 5 years and progress until 30 years. [9] Precipitating factors include fever, dehydration, infection, acidosis, hypoxia and pregnancy. [10]

Presented is a known case of hemolytic anemia with hip pain. Bone scan revealed features of osteonecrosis of head of the left femur, the long bones revealed linear cortical uptake at multiple sites suggestive of cortical infarcts. Spleen revealed soft-tissue localization because of recurrent microvascular infarcts.

Case 2

Illustration of infarct, remodeling in hemolytic anemia had a backache of 10-day duration at presentation. He was a known case of congenital hemolytic anemia. Bone scan revealed cold area in D12 vertebra suggesting infarction. The distal metaphysis of femur and proximal metaphysis of tibia appear to be expanded. This is a manifestation of persistence of hematopoiesis in long bones in view of recurrent hemolysis [Figure 2].
Figure 2: A known case of congenital hemolytic anaemia, this 52-year-old man had backache of 10 days duration. Plain radiograph (not shown here) was normal. Bone scan revealed photon deficiency in D12 vertebra suggesting bone infarct. The distal metaphysis of long bones were expanded (remodeled) as a result of prolonged hemolytic anemia

Click here to view


Acute myeloid leukemia

Skeletal manifestations have been described in acute leukemia. These are osteolysis, osteopenia, metaphyseal bands, pathological fractures, osteosclerosis, periosteal reaction, mixed lysis-sclerosis. It has been suggested that unexplained persistent skeletal pain and radiologic alterations should be investigated for acute leukemia. [11] Massive periosteal reaction has been reported in a variant of acute myeloid leukemia. [12] Post-bone marrow transplantation graft versus host disease related myositis has also been reported. [13]

Osteonecrosis can occur because of steroids or chemotherapy (all trans-retinoic acid). Alterations in fat metabolism with vascular occlusion due to fat embolization, as well as microtraumata and osteoporosis are etiologic factors. Multifocal aseptic osteonecrosis has been reported in acute leukemia. [14],[15]

Plain radiogram is usually the first investigation to be performed. It is less sensitive in detecting early changes. Bone scintigram and magnetic resonance imaging show early changes with variable sensitivity and specificity. [16] Both early and delayed phase of bone scan must be acquired to increase the sensitivity of the test. [17]

Case 3

Illustration of cortical infarcts in acute leukemia. A 4-year-old boy presented with weakness in lower limbs. Plain radiograph was normal. Three phase bone scan showed diffuse uptake of tracer in the shaft of femur bilaterally suggesting cortical infarcts. Hematologic work up revealed acute myeloid leukemia [Figure 3].
Figure 3: A 4-year-old male child presented with weakness of few days in lower extremities and inability to bear weight. There was mild fever. Plain radiograph was unremarkable; (a) A working diagnosis of osteomyelitis of femur was made clinically. Three phase bone scan revealed diffuse increased tracer localization in the distal shaft of right femur (>) and mid shaft of left femur (<); (d) Perfusion and blood pool images did not favor the diagnosis of osteomyelitis; (b,c) Hematologic work up was suggested suspecting this to be bone cortical infarcts. Subsequent work up revealed acute myeloid leukemia

Click here to view


Case 4

Illustration of osteonecrosis of humeral head secondary to steroid treatment was a known case of T cell lymphoblastic leukemia, which had allographic stem cell transplant. He was on long-term steroid therapy and complained of pain in the shoulder joint bilaterally. Bone scan revealed diffuse increased tracer uptake in the head of humerus bilaterally suggesting osteonecrosis [Figure 4].
Figure 4: A known case of acute T cell lymphoblastic leukemia on treatment underwent allographtic stem cell transplantation. His hemogram was as follows: Hemoglobin 10.2 g/dL, red blood cell 2.22 10^6/uL (N 4.50-6.50), white blood cells=200/cmm (N 4000-10000) Neutrophils 21.6% Lymphocytes 47.4%, Monocytes 30.6%, Eosinophils 0.4%, Basophils 0%. He was on steroid therapy. He presented with pain in the shoulders bilaterally. Bone scan revealed diffuse uptake of radiotracer in the head of shoulder bilaterally suggesting osteonecrosis

Click here to view


Superselective angiographic study in patients at risk for osteonecrosis with steroid therapy has shown obliteration of branches of the superior retinacular arteries as well as failure of revascularization. [18],[19],[20]

Chronic myeloid leukemia

Chronic myeloid leukemia is a myeloproliferative disorder with clonal expansion of transformed primitive hematopoietic progenitor cells. It comprises 15% of all adult leukemias. The Philadelphia chromosome (Ph), which results from a translocation between the long arms of chromosomes 9 and 22, t (9; 22) (q34; q11), can be demonstrated in 90% of patients with chronic myeloid leukemia (CML).

The condition may be diagnosed incidentally in asymptomatic patients as there are two phases of the disease-an indolent benign (chronic) phase or the acute blast phase. Exposure to steroids can make the skeleton osteoporotic and susceptible to fractures.

Case 5

Illustration of osteoporotic collapse Early whole-body images show increased tracer pooling in the metaphysis of long bones as well as the dorsolumbar vertebrae. Delayed images show linear uptake in thoracic 12 vertebra suggesting osteoporotic collapse. In addition diffuse uptake in axial and appendicular skeleton indicating high turnover of minerals in the skeleton. This is related to diffusing bone marrow involvement or underlying metabolic bone disease [Figure 5].
Figure 5: A 67-year-old known case of chronic myeloid leukemia had backache. Plain radiograph was normal. Bone scan revealed D12 vertebra showed linear uptake suggesting osteoporotic collapse. Whole body study revealed diffuse increased tracer localization in the axial and appendicular skeleton. Hyperactive bone marrow was probably responsible for such a pattern that simulated metabolic bone disease. Please note diminished tracer localization in the kidneys

Click here to view



   Conclusion Top


Skeletal manifestations in various hematologic disorders are described. Bone scan is a non-specific investigation. Any insult that interferes with osteoblastic activity of the skeleton will appear to be hot. However, critical evaluation of scintigrams along with judicious review of clinical manifestations can help in making the diagnosis of underlying hematologic disorders. Some of these are subtle and the interpreter must be aware of these to avoid delay in diagnosis and management.


   Acknowledgment Top


The following persons helped immensely: Indrajeet Solao as technical expert in image editing, Ranjit Mahajan, Parag Deshmukh, Supriya Ghosh, Jai Ganesh, Deepanjali Gawade who acquired the scintiscans.

 
   References Top

1.Herrick JB. Peculiar elongated and Sickle-shaped red corpuscles in a case of severe anemia. Arch Int Med 1910;6:517-21.  Back to cited text no. 1
    
2.Ingram VM. Gene mutations in human haemoglobin: The chemical difference between normal and sickle cell haemoglobin. Nature 1957;180:326-8.  Back to cited text no. 2
[PUBMED]    
3.Dean J, Schechter AN. Sickle-cell anemia: Molecular and cellular bases of therapeutic approaches (first of three parts). N Engl J Med 1978;299:752-63.  Back to cited text no. 3
[PUBMED]    
4.Bertles JF, Milner PF. Irreversibly sickled erythrocytes: A consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia. J Clin Invest 1968;47:1731-41.  Back to cited text no. 4
[PUBMED]    
5.Eaton JW, Jacob HS, White JG. Membrane abnormalities of irreversibly sickled cells. Semin Hematol 1979;16:52-64.  Back to cited text no. 5
[PUBMED]    
6.Vinchinsky EP, Lubin BH. Sickle cell anemia and related hemoglobinopathies. Pediatr Clin North Am 1980;27:429-47.  Back to cited text no. 6
    
7.Bohrer SP. Acute long bone diaphyseal infarcts in sickle cell disease. Br J Radiol 1970;43:685-97.  Back to cited text no. 7
[PUBMED]    
8.Bohrer SP. Bone Ischemia and Infarction in Sickle Cell Disease. St. Louis: Warren H Greene, Inc; 1981.  Back to cited text no. 8
    
9.Sennara H, Gorry F. Orthopedic aspects of sickle cell anemia and allied hemoglobinopathies. Clin Orthop Relat Res 1978;130:154-7.  Back to cited text no. 9
[PUBMED]    
10.Serjeant GR. Sickle Cell Disease. Oxford: Oxford University Press; 1985. p. 191.  Back to cited text no. 10
    
11.Sinigaglia R, Gigante C, Bisinella G, Varotto S, Zanesco L, Turra S. Musculoskeletal manifestations in pediatric acute leukemia. J Pediatr Orthop 2008;28:20-8.  Back to cited text no. 11
[PUBMED]    
12.Ueda T, Ito Y, Maeda M, Fukunaga Y. Massive periosteal reaction a presenting feature of acute megakaryocytic leukemia. Pediatr Int 2007;49:1015-7.  Back to cited text no. 12
[PUBMED]    
13.Oya Y, Kobayashi S, Nakamura K, Shimizu J, Murayama S, Kanazawa I. Skeletal muscle pathology of chronic graft versus host disease accompanied with myositis, affecting predominantly respiratory and distal muscles, and hemosiderosis. Rinsho Shinkeigaku 2001;41:612-6.  Back to cited text no. 13
[PUBMED]    
14.Solarino G, Scialpi L, Bruno M, De Cillis B. On a case of multifocal osteonecrosis in a patient suffering from acute lymphoblastic leukemia. Chir Organi Mov 2008;92:119-22.  Back to cited text no. 14
[PUBMED]    
15.Chan BK, Bell SN. Bilateral avascular necrosis of the humeral trochleae after chemotherapy. J Bone Joint Surg Br 2000;82:670-2.  Back to cited text no. 15
[PUBMED]    
16.Warwick BJ, Caristo V, Hartin N, Ihsleish W, Perera C, van der Wall H. MRI-negative, bone scintigram-positive in early osteonecrosis of the knees. Clin Nucl Med 2006;31:750-3.  Back to cited text no. 16
[PUBMED]    
17.Shalaby-Rana E, Majd M. (99m) Tc-MDP scintigraphic findings in children with leukemia: Value of early and delayed whole-body imaging. J Nucl Med 2001;42:878-83.  Back to cited text no. 17
[PUBMED]    
18.Atsumi T, Kuroki Y. Role of impairment of blood supply of the femoral head in the pathogenesis of idiopathic osteonecrosis. Clin Orthop Relat Res 1992;277:22-30.  Back to cited text no. 18
[PUBMED]    
19.Smith DW. Is avascular necrosis of the femoral head the result of inhibition of angiogenesis? Med Hypotheses 1997;49:497-500.  Back to cited text no. 19
[PUBMED]    
20.Usher BW Jr, Friedman RJ. Steroid-induced osteonecrosis of the humeral head. Orthopedics 1995;18:47-51.  Back to cited text no. 20
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]


This article has been cited by
1 An update on the recent literature on sickle cell bone disease
Ifeyinwa Osunkwo
Current Opinion in Endocrinology & Diabetes and Obesity. 2013; 20(6): 539
[Pubmed] | [DOI]



 

Top
  
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Cases and Discussion
   Conclusion
   Acknowledgment
    References
    Article Figures

 Article Access Statistics
    Viewed5477    
    Printed52    
    Emailed1    
    PDF Downloaded133    
    Comments [Add]    
    Cited by others 1    

Recommend this journal