Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 65 Print this page  Email this page Small font size Default font size Increase font size
ORIGINAL ARTICLE
Year : 2011  |  Volume : 26  |  Issue : 2  |  Page : 78-81

Comparative evaluation of 18F-FDOPA, 13N-AMMONIA, 18F-FDG PET/CT and MRI in primary brain tumors - A pilot study


1 Department of Nuclear Medicine, Army Hospital, Research and Referral, Delhi Cantt, New Delhi, India
2 Department of Neurosurgery, Army Hospital, Research and Referral, Delhi Cantt, New Delhi, India
3 Department of Radiation Oncology, Army Hospital, Research and Referral, Delhi Cantt, New Delhi, India
4 Department of Radiology, Army Hospital, Research and Referral, Delhi Cantt, New Delhi, India

Correspondence Address:
Jacob J Mattakarottu
Department of Nuclear Medicine, Army Hospital, Research and Referral, Delhi Cantt, New Delhi- 110010
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-3919.90256

Rights and Permissions

Aim : To determine the diagnostic reliability of 18F-FDOPA, 13N-Ammonia and 18F-FDG PET/CT in primary brain tumors and comparison with magnetic resonance imaging (MRI). Materials and Methods: A total of 23 patients, 8 preoperative and 15 postoperative, undergoing evaluation for primary brain tumors were included in this study. Of them, 9/15 were operated for high grade gliomas (7/9 astrocytomas and 2/9 oligodendrogliomas) and 6/15 for low grade gliomas (5/6 astrocytomas and 1/6 oligodendroglioma). After PET study, 2 of 8 preoperative cases were histopathologically proven to be of benign etiology. 3 low grade and 2 high grade postoperative cases were disease free on 6 months follow-up. Tracer uptake was quantified by standardized uptake values (SUV max ) and the SUV max ratio of tumor to normal symmetrical area of contra lateral hemisphere (T/N). 18F-FDOPA uptake was also quantified by SUV max ratio of tumor to striatum (T/S). Conventional MR studies were done in all patients. Results: Both high-grade and low-grade tumors were well visualized with 18F-FDOPA PET. Sensitivity of 18F-FDOPA PET was substantially higher (6/6 preoperative, 3/3 low grade postoperative, 7/7 high grade postoperative) than with 18F-FDG (3/6 preoperative, 1/3 low grade postoperative, 3/7 high grade postoperative) and 13N-Ammonia PET (2/6 preoperative, 1/3 low grade postoperative, 1/7 high grade postoperative). FDOPA was equally specific as FDG and Ammonia PET in operated cases but was falsely positive in two preoperative cases. Sensitivity of FDOPA (16/16) was more than MRI (13/16). Conclusion: 18F-FDG uptake correlates with tumor grade. Though 18F-FDOPA PET cannot distinguish between tumor grade, it is more reliable than 18F-FDG and 13N-Ammonia PET for evaluating brain tumors. 18F-FDOPA PET may prove to be superior to MRI in evaluating recurrence and residual tumor tissue. 13N-Ammonia PET did not show any encouraging results.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3935    
    Printed218    
    Emailed2    
    PDF Downloaded191    
    Comments [Add]    
    Cited by others 2    

Recommend this journal